		$\begin{array}{r} \text { Mar } \\ 2023-202 \end{array}$			
Geometry: Concepts \& Connections					
Unit title	Unit 6: Making Sense of Circles	MYP year	5	Unit duration (hrs)	20 hours
Mastering Content and Skills through INQUIRY (Establishing the purpose of the Unit): What will students learn?					
GA DoE Standards					
Standards					
G.GSR. 7 G.GS Str an G.GS Fun Str G.GS trian Fu - S	ept of a radian measure and specia interpret a radian as the ratio of ods given opportunities to make sen Is and technology visualizations, associated radian measure. explain the relationship between able to convert fluently (flexibly, ods ve opportunities to explore and ight triangles on the unit circle to reference angles and identify coo able to articulate the pattern ass plore, interpret, and use radian m luding the connection of $5 \pi 6 \approx 2$ ns, students develop an understa tive is limited to angle measures	o the radius ing of radian d have oppo es and degr efficiently) mentally the values of si in all four qua gle measur on conversi ts measured it circle has $5^{\circ}(\pi / 4)$ and	exp dev flu ian dia or e ft es, he so	visual tools. rstanding of the relat n degree and radian solve real-life proble d degree measure u $5^{\circ}(\pi / 4)$ and $60^{\circ}(\pi / 3)$ e.g., 150° as $180^{\circ}-30^{\circ}$ 210°, etc., and articu d angles within one	between es. al tools. measures $180^{\circ}+30^{\circ}$ patterns clockwise
$\begin{array}{r} \text { G.GSR.8: } \\ \text { G.GS } \\ \text { Fur } \\ \text { • } \end{array}$	ly theorems involving circles; des apply angle relationships formed ks should include:	e arc length gents, secan	d	lain real-life situation	ng circles.

Published: 12,2023 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.
o angles based on the location of the vertex: central, inscribed, interior, and exterior.
o the angle formed at the intersection of the radius of a circle and a segment tangent to the circle (point of tangency); determining these segments are perpendicular. o triangles inscribed in and circumscribed about circles.
o opposite angles of a quadrilateral inscribed in a circle; determining these angles are supplementary.
G.GSR.8.2 Using similarity, derive the fact that the length of the arc (arc length) intercepted by an angle is proportional to the radius; derive the formula for the area of a sector. Solve mathematically applicable problems involving applications of arc length and area of sector.

Fundamentals

- Students should be able to apply strategic thinking and complex reasoning when solving problems involving arc length and area of a sector of a circle.

Strategies and Methods

- Students should be given opportunities to use interactive tools to engage with the content in order to develop a conceptual understanding of arc length and area of a sector
G.GSR.8.3 Write and graph the equation of circles in standard form.

Terminology

- The general form of the equation for a circle is $x^{2}+y^{2}+C x+D y+E=0$. The standard form of the equation for a circle is $(x-h)^{2}+(y k)^{2}=r^{2}$.
undamentals
- Students should be able to identify the center and radius of a circle from an equation in standard form or from the graph of a circle.
- Students should be able to write the equation of a circle in standard form given the graph of the circle.
- Students should be able to graph a circle from the standard form equation of a circle.
- As students convert equations in general form to standard form in this course, the leading coefficient of the quadratic terms should be limited to 1 .

Strategies and Methods

- Students may use a variety of methods to convert the equation of a circle in general form to the equation of a circle in standard form for a specific, circumstantial purpose. One strategy used by students may include (but is not limited to) completing the square.
G.MM.1: Apply mathematics to real-life situations; model real-life phenomena using mathematics.
G.MM.1.1 Explain mathematically applicable problems using a mathematical model.

Fundamentals

- Students should be provided with opportunities to learn mathematics through the exploration of real-life problems.
- Mathematically applicable problems are those presented in context where the context makes sense, realistically and mathematically, and allows for students to make decisions about how to solve the problem (model with mathematics).
G.MM.1.2 Create mathematical models to explain phenomena that exist in the natural sciences, social sciences, liberal arts, fine and performing arts, and/or humanities contexts.

fundamentals

- Students should be able to use the content learned in this course to create a mathematical model to explain real-life phenomena.
G.MM.1.3 Using abstract and quantitative reasoning, make decisions about information and data from a mathematically applicable situation.

undamentals

- Students should be able to connect learning of geometric shapes and their properties to describe objects.
- Students should be able to apply geometric methods and data to make decisions about structures and solve real-world problems.
G.MM.1.4 Use various mathematical representations and structures with this information to represent and solve real-life problems.

Fundamentals

- Students should be able to construct a model by selecting and creating algebraic and geometric representations that describe relationships between variables in context.

Concepts/Skills to support mastery of standards

- Identify different angles in circles

Published: 12,2023 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

- Convert between radians and degrees
- Connect special right triangles and unit circle
- Graph and write equations of circles
- Derive area of sectors within circles

Vocabulary

Arc	Arc Length	Arc Measure	Central Angle	Chord	Circumcenter
Circumference	Circumscribed Circle	Inscribed	Inscribed Angle	Inscribed Circle	
Minor Arc	Point of Tangency	Secant Line	Secant Segment	Sector	

Notation

$a x^{\wedge} 2+b y^{\wedge} 2+c x+d y+e=0 \quad(x-h)^{\wedge} 2+(y-k)^{\wedge} 2=r \quad \sin (\theta) \quad \cos (\theta) \quad \tan (\theta)$

Key concept		Gelated concept(s)	Plobal context
Relationships	Generalization Measurement	Orientation in space and time	

Statement of inquiry

Generalizing patterns in the world can lead to recognizing broader relationships.

Inquiry questions

Factual-

- What are the parts of a circle?
- What are the properties of tangents?
- What are the properties of chords in a circle?
- What are the formulas for arc length and sector area?

Conceptual-

- How can we use the properties of chords to solve problems?
- How is a tangent line related to the radius of a circle at the point of tangency?

Published: 12,2023 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

- How can we solve for angles and arcs by intersecting chords, tangents, and secants?
- How can we solve for segment lengths formed by intersecting chords, tangents, and secants?

Debatable-

- How can you use measure and geometric knowledge of circles to design space cities with specific parameters?

MYP Objectives	Assessment Tasks	
What specific MYP objectives will be addressed during this unit?	Relationship between summative assessment task(s) and statement of inquiry:	List of common formative and summative assessments.
MYP A Knowledge and Understanding MYP B Patterns	- Students will apply their knowledge and understanding of the Unit Circle to solve more complex problems. - Students will be able to describe and effectively use the relationship between area and sectors of a circle to derive and justify the sector area formula for all sectors of circles.	Formative Assessment(s): MYP B - Area of a Sector Summative Assessment(s): Unit 6A Test - Unit Circle Unit 6B Test - Circles
Approaches to learning (ATL)		
Category: Thinking skills Cluster: Transfer Skill Indicator: Identify obstacles and challenges, Apply existing knowledge to generate new ideas, Apply skills and knowledge in unfamiliar situations		

Learning Experiences		
Objective or Content	Learning Experiences	Personalized Learning and Differentiation
G.GSR.7.3 Students will use special right triangles and reflections to derive the unit circle.	https://teacher.desmos.com/activitybuilder/custom/6492fd48d5528f408544f4c1 Special Right Triangles Desmos Activity Description: In this learning plan, students will use Desmos to locate special right triangles	- Provide guided notes structure for Desmos activity - Provide hands-on visualization of Unit Circle

Published: 12,2023 Resources, materials, assessments not linked to SGO or unit planner will be reviewed at the local school level.

	on the unit circle to determine the values of sine and cosine for $30^{\circ}(\pi / 6), 45^{\circ}(\pi / 4)$ and $60^{\circ}(\pi / 3)$ angle measures. Learning Goals: - I can use my knowledge of special right triangles to find angle measures on the unit circle. - I understand the relationship between cosine and sine and the x and y coordinates. - I can explain how the unit circle connects to right triangles.	- Extend: Guide students to discover or ponder other points on the unit circle not formed by the special right triangles	
Content Resources			
Textbook Correlation: enVision A\|G	A - Geometry		
G.GSR.7.1-Lesson 10-1; Algebra 2: Lesson 7-2	G.GSR.8.1 - Lesson 10-2, 10-3, 10-4, 10-5, Topic 10 - Mathematical Modeling in 3 Acts		
G.GSR.7.2 - Algebra 2: Lesson 7-2	G.GSR.8.2 - Lesson 10-1		
G.GSR.7.3-Algebra 2: Lesson 7-3	G.GSR.8.3-Lesson 9-3		

